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Logarithmic Corrections to Finite-Size Scaling 
in the Four-State Potts Model 
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The leading corrections to finite-size scaling predictions for eigenvalues of the 
quantum Hamiltonian limit of the critical four-state Ports model are calculated 
analytically from the Bethe ansatz equations for equivalent eigenstates of a 
modified XXZ chain. Scaled gaps are found to behave for large chain length L 
as x+d / l n L+o [ ( l n L ) - t ] ,  where x is the anomalous dimension of the 
associated primary scaling operator. For the gaps associated with the energy 
and magnetic operators, the values of the amplitudes d are in agreement with 
predictions of conformal invariance. The implications of these analytical results 
for the extrapolation of finite lattice data are discussed. Accurate estimates of x 
and d are found to be extremely difficult even with data available from large 
lattices, L ~ 500. 

KEY W O R D S :  Finite-size scaling; Ports model; Bethe ansatz; conformal 
invariance. 

1. I N T R O D U C T I O N  

Despite considerable effort involving several techniques, numerical 
estimates of the critical exponents of the two-dimensional four-state Ports 
model have been poor. These failures are attributed to the onset of 
marginality effects in the q-state model at q = q c = 4 ,  resulting in 
logarithmic corrections to the critical behavior. (1'2) In the case of finite-size 
scaling, the leading logarithmic (in lattice size) corrections that occur in the 
eigenvalues of the transfer matrix at criticality have been calculated 
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recently by Cardy (~ on the assumption of conformal invariance. 4 These 
results are of particular relevance to the extrapolation of finite lattice data 
by finite-size scaling. (5) To date, such data have been restricted to strips 
(chains) of width (length) Lmax ~< 11. Consequently, estimates of critical 
exponents have not been in close agreement with the expected values. (6-9) 

If we write the transfer matrix as T = e  -all, where a is the lattice 
spacing, then Cardy's results (3) for the energy levels E~ of H are, as L --* o% 

..~2rCZ (x~+ d~ +o[(lnL)-l]) (1.1) E~- E~ ~ l n L  

nr {c+O[(lnL) 3]} (1.2) Eo~ eooL - - ~  

where e~ is the bulk ground state energy per site. Here {x~} denote the 
dimensions of the primary scaling operators of the theory and c is the con- 
formal anomaly. For the four-state Potts model, c = 1. (~~ The amplitudes 
d~ can be expressed (3/ in terms of operator expansion coefficients and 
should be universal. The inclusion of the factor r allows these results to be 
extended ~9) to (1 + 1)-dimensional quantum Hamiltonian formulations; z 
ensures that the resulting equations of motion are conformally invariant. 
Similarly, in a transfer matrix formulation, z can account for the effect of 
anisotropic interactions. (H) 

Cardy (3) went on to show that the deviations observed in the (small) 
lattice data of B16te and Nightingale (7~ for the four-state Potts model were 
in qualitative agreement with (1.1) and (1:2). Recently, the available finite 
lattice data for the quantum Hamiltonian limit of the four-state Potts 
model have been extended considerably. (12'13) This extension was achieved 
by deriving an exact equivalence between eigenstates of the q-state quan- 
tum otts chain and those of a modified XXZ Heisenberg chain. The eigen- 
values of this XXZ model on chains of up to 1024 sites could then be 
obtained by numerically solving Bethe-ansatz equations. Assuming a 
leading correction of the form (1.1), excellent agreement was obtained with 
the values Xe = 1/2 and Xm = 1/8 for the scaling dimensions of the energy 
density and magnetization operators. However, estimates of the amplitudes 
de and dm were still only in rough agreement with Cardy's predictions of 

d~ = 3/4, dm = 1/16 (1.3) 

Since the equivalent XXZ model is solvable by the Bethe ansatz, it 
should be possible to compute analytically the leading finite-size correc- 
tions to the energy levels by the methods developed by de Vega, 

4 For a recent review of conformal invariance and its application to finite-size scaling, see 
ref. 4. 
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Woynarovich and Ham er J  14-16) Previously, this approach has led to exact 
calculations of the conformal anomaly, the surface energy, and several bulk 
and surface critical exponents of the XXZ,  Potts, and Ashkin-Teller 
models. (15-=~ In this paper, we continue this work and derive exact results 
for the amplitudes of the logarithmic corrections appearing in the four-state 
Potts model. These results are derived in Section 2 and gathered together 
in Section 3. Since Section 2 is rather technical, readers interested only in 
the results as they pertain to the Potts model may care to omit this section 
and turn directly to Section 3. To conclude the paper, we reexamine the 
large-lattice data of Alcaraz et al. ~3) in Section 4. 

2. A N A L Y T I C  D E R I V A T I O N  OF L O G A R I T H M I C  C O R R E C T I O N S  
TO F IN ITE-S IZE S C A L I N G  

2.1. Genera l  Formulas 

We consider the Hamiltonian (case A of ref. 17) 
[ N 

H =  --2j2.=1 (~176162 1 ~-~176 '~- zJ~176 1) (2.I) 

with A = - c o s  y and boundary conditions 

a~u+~+_iayv+l=eie(a~+ia~), a U + l = a ~  (2.2) 

in the limit y ~ 0. Since the total number  m of down spins in the chain is 
conserved, it is convenient to label each spin sector by the number  

1 
n = ~  N - m  (2.3) 

where we assume that N is even. The ground state lies in the sector n = 0, 
m = N/2. 

The Bethe ansatz for the eigenstates of (2.1) has been discussed in 
detail elsewhere. (~3'~7) It  involves s a momentum pj for each down spin; but 
a convenient change of variables is 

p = 2 t a n - l ( 2 2 ) -  ~b(2), - o o < 2 < o o  (2.4) 

The boundary conditions (3.2) are satisfied if the 2j obey the equations 

/=I 
where t h e / j  are integers or half-integers. 

5 The results quoted here are obtained from those of ref. 17 by first rescaling variables and 
then taking the limit 7 ~ 0, as discussed in the Appendix, 
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Following de Vega and Woynarovich, (~4) we define a function 

zN(2):~ ~(2) N 0 

and its derivative 

(2.6) 

0" N( 2 ) = dZN(2  )/d~ (2.7) 

so that 

ZN(2j) ----- I J N  (2.8) 

When N goes to infinity, the real roots 2j of (2.5) tend to a continuous 
distribution with density NO"N(2). The energy of the state specified by the 
set {2j} of zeros is 

1 
E=-~ N -  ~ ~b'(2j) (2.9) 

j = l  

where the prime denotes differentiation with respect to 2. 
The finite-size corrections to the root density are given by (14) 

0"N(~)-0"00(~)=-gf~aup(~-~) j_Z a(#-2j)-0"N(.) 

+7-~ p(2-&)- p(2-2c) (2.10) 

where the 2c denote complex roots in the 2 plane, the 2 h denote "holes" 
(i.e., unoccupied root positions on the real axis), and the 2j run over all 
root positions on the real axis, including holes. The kernel p(2) is 

f0 - cos(2w) (2.11) 
p(2) = dw 1 + e ' - - - - ~  

Finally, the finite-size corrections to the energy per site e N = E/N  follow 
from 

eN -- e00 = --2re d2 0"00(2 ) (~(2 - -  2 j )  - -  0"N(2) 
00 j 1 

N c ( Y ( 2 c )  ~c _00 

27~ 
+ ~ ao~(2h) (2.12) 

T 
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Applying the Euler Maclaurin formula leads to (16'17) 

!; aN()o)-cr~(2) = -  o~ d#aN(1~)p(2_#)+l - d, UaN(It) P()o--~) 
A .  ~ - - o c  

p ( 2 - A  +)+ p(2 + A_) 
2NTr 

1 ~p'()~u_A+) p'(2 +A_)~  

+ 12-T~-F~ L aN(A+) ;~-AV~ iJ 

+ - ~  p ( )o - -2h ) -~p (2 -2c )  + O ( N  -4) (2.13) 
c 

where A+ ( - A )  is the largest (smallest) root on the real axis. Similarly, 
the energy density is given by 

e x - e ~  = ~ d2a~(2)~r~v(2)+ d2~r~(2) aN(2) 
2~ A + 

-- 2N 1 - ~ L a N ( - - A  ) ~u(A+)J 

--2 6oo()th) q- O(N-4) (2.14) 
h 

2.2. An Example of Logarithmic Corrections 

Consider the ground state of the Hamiltonian (2.1) in spin sector n for 
the case ~ = 0. For this state it is known (21) that the roots are all real and 
are distributed symmetrically on the real axis, so that A+ = A = A. The 
j th root corresponds to 

m + l  
I j -  ~ -  + j ,  j =  1,..., m (2.15) 

There are no complex roots or holes (gaps in the distribution of real roots). 
Thus (2.13) and (2.14) reduce to 

aN().)_O. (j.) -------1 dl.tCrN(it) p()_p) p()~-A)__ p ' ( 2 - A )  
zt 2NTz q 12N2rCaN(A) 

l { j - ~  C dpaN(p) p(2_Cz) p(2+A) p'(2 + A) + -  

+ O ( N  -4) (2.16) 
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and 

eu--eoo=fA~dAaoo(2) au(2 ) a~(A) a'~(A) 
4~ 2N 12N2aN(A) 

+ O(N -4) (2.17) 

respectively. From Yang and Yang, ~2~) we know that 

1 
a~(2)=  e ~x as 2 ~  

2 cosh(~2) 
(2.18) 

Hence, using the fact that 

f~  ~b'()~) dA = 2~ 

one finds the sum rules for the root density (2~ 

f - -~ O'N(~ ) d2 =~+ N 

(2.19) 

(2.20) 

fA ~ 1 aN(2) d 2 = ~ [ 1  +fl(n)], fl(n)=2n (2.21) 

Now for 2 ~>A, the terms in curly brackets in (2.16) are small, and 
may be neglected in determining the leading-order finite-size corrections as 
N ~  m. Then Eq. (2.16) takes the form of a Wiener-Hopf equation, which 
can be solved (16'17) for the root density aN(2), subject to the constraint 
(2.21). The results of this exercise are summarized in the Appendix. 
Substituting the resulting expression for aN()~ ) in (2.17) gives (2~ 

g2 [ 3 ] 7"c2 
eN--eoo "~ ~-Z 1--~f12(n) = - - ~ - 5 ( 1 - - 6 n 2 ) ,  N ~  (2.22) 

The next (logarithmic) corrections to this result arise (iv) from the 
bracketed terms in (2.16), which were neglected in the leading-order 
calculation. We assume that these terms give rise to small perturbations 
A ~ A + 6A, aN(2 ) ~ 0"u()~ ) + 6aN(2). The resulting first-order perturbation 
to (2.16) is (for 2>~A) 

=_ fA ~ P'()~- A) 6aN(A) 6au(it ) ~1 d# 6aN(p) p(2-- #) 12N2~a ~ 

3A [ p'(A-A)2N 4 p"(2-A12N 2 a - - - - ~  + a'N(A) p'()~-A)]12N2a 2 

2N 12N2ao j (2.23) 
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where 
O" 0 = aN(A ) 

The analogous first-order perturbation to (2.17) is 

(2.24) 

oo 7rG2(A ) b~ N(A ) 
b(eN--eoc)=4rr fA dl~ooo()~)bON(,]~)--~ 3N2o.~ 

a~(A) c r y ( A ) a ' ( A )  aN(A)] 
~ 4 ~  ~ A  

a~ + ~  + 12N2ao lZN2a~ J 

Now, from (A.19) of the Appendix, 

(2.25) 

1 A ~ - l n N ,  N~oo 
772 

and hence 
a~(A)=e ~A +O(N 3) 

so that (2.25) can be rewritten 

(2.26) 

(2.27) 

b(eN_eoo)=4g e ~A{ff dAe-~. A)baN(). ) gbaN(A) 
12N2a 2 

-hA ao--~--N-t 12N2ao-~ 12NZa2oj j 

The constraint (2.21) gives rise to the relation 

(2.28) 

Since 

bA =--1 f ~ baN(J-) d j- 
0- o Ja  (2.29) 

1 
P(2)~h-~ '  j----,'.vo (2.30) 

the driving terms in curly brackets in (2.23) can be approximated for 
2~> 4 as 

f-~ d*' oN(~,) p(j--- ~) p(j-+A) p'(2 + A) 
2N 12N2ao 

-~ 4(,t +A)2 d#aN(l~)-8N()~+A)2 
/~(n) 

for nva0 (2.31) 8N(2 + A)2 

822/52/3-4-11 
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where we have used (2.21). With this approximation, (2.23) again has the 
form of a Wiener-Hopf  equation with the same kernel as (2.16) and can be 
treated using the same methods. This hierarchical of the Wiener-Hopf  
equations for the root density is similar to that discussed by Yang and 
Yang. (21 ) 

2.3. The Wionor-Hoof Equation 

Using (2.31), we may rewrite (2.23) as 

Z( t ) -  k ( t - s ) g ( s ) d s  

I k ' ( t )  k"(t) 
= f( t )  - c2k'(t) - cl aok(t) - ~ + 12N2ao 

where t =  2 -  A, a~ = ON(A), and we define 

k(;v) = 
f (2 )  = c3/(2A + 2) 2 

Z(/~) = 6 a N ( ~  "~ A )  

with 

a6k'(/)] 
- -  + 12N2a2 j (2.32) 

(2.33) 

(2.34) 

(2.35) 

Define Fourier transform pairs Z ~ X, f ~ F, k ~ K by 

_ l f ~  X(w )=f_  e~Wtx(t)dt; Z(t)-~-~ e ~w'X(w) dw (2.39) 

etc. The kernel function K(w) can be "factorized" in the form ('7) 

[ 1 - K ( w ) ]  I = G + ( w )  G (w) (2.40) 

where the functions G+_(w) are holomorphic and continuous in the upper 
and lower halves re+ of the complex w plane, respectively. The functions 

C 1 = ~0"N(/t ) d2 (2 .36)  

faN(A) (2.37) 
c 2 = 12N2o.~ 

13(n) (2.38) 
c3 = 8N~ 
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X(w) and F(w) may be split into + 
continuous in n+, respectively) by 

X(w) = x+ (w) + x _  (w) 

where 

X+_ (w) = eiW~H( + t) 2(t) dt 
- -  o 0  

with H(t) the Heaviside step function: 

H(t)  = {1, if t>O  
0, if t < 0  

Fourier transforming (2.32) yields 

components 

687 

(holomorphic and 

(2.41) 

(2.42) 

(2.43) 

X + ( w ) -  C(w) 
F-G (w)[X ( w ) + C ( w ) - r _ ( w ) ] = G _ ( w ) F + ( w )  (2.44) 

G+(w) 

where 

iw w 2 iwcr' o ] 
C(w)= c~ ~O+ 2N 12N2tro 12N2ao2j-iwc2 (2.45) 

is an entire function. To separate out terms which are analytic in the two 
half-planes n+, we further split 

G (w) F+(w)= Q+(w) + Q_(w) (2.46) 

Now define a function 

P ( w ) = Q _ ( w ) - G  (w)[X (w)+C(w) -F_(w)] ,  w~Tz (2.47) 

x+ (w) - C(w) 
= Q+(w), wex+ (2.48) 

G+(w) 

Since the expression in (2.48) is analytic in n+, while that in (2.47) is 
analytic in ~_,  (2.47) is the analytic continuation of (2.48) into x . Con- 
sequently, P(w) is entire and can be determined from the asymptotic 
behavior of one of its defining expressions. Hence we may solve for X+ (w) 
or X_(w). 

Since H(t))~(t) must be integrable at the origin, X+(w)--*O as 
]w] ~ oe in ~z+. Also, we have (see below) Q+(w)~O and 

G+(w)..~l+gl g2 g3 -4 w+w-5+w--5+O(w ) as ]w]-~oe (2.49) 
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where, from (A.8) and (A.9) of the Appendix, g~ = i•/12 and g2 = ~g1.1 2 
Hence 

e(w)= c~w2 [ (1 O'o ig, )] 
12UZao+iW c2-cl 2N 12NZao 2 lZUZao/J 

-~ iczg~+c~{ao ig l '  igl~176 g~ "]l 
L \  -2-N-~ 1 ~  24N2cro/J 

(2.50) 

Now from (2.34), 

fo o F+ (w) = c a dt eiW, {1 1 (2A+t)2-c3  - ~ + i w E l ( - 2 i w A ) e  -2iwA (2.51) 

where E~(-  2iwA) is the exponential integral function, with a cut along the 
negative imaginary axis in the w plane. Taking a Cauchy integral of 
G ( w )  F+(w) around this branch cut, we obtain 

G +(iy) ye-2y A 
O+(w) = ic3 | dy (2.52) 

w+iy oo 

Finally, from (2.48) and (2.47), one obtains the solution 

X+(w) = e~W'z(t) d t=C(w)+G+(w)[P(w)+Q+(w)]  (2.53) 

where the functions on the right-hand side are now known. 
There are two self-consistency conditions which must be applied to 

this solution. First, from (2.36), 

Cl O-0 = c~7N(,~)d)~=X+(O)=Clffo+G+(O)[P(O)--}-Q+(O)] ( 2 . 5 4 )  

Hence one finds 

1 E A] G+(0) c 1 ~  (2.55) 
c2 = c3 2A 

where we have used the approximation 

~o "~ G+(0) Q+(0) = c3 dyG+(iy)e-2yA~c3 Z----if- 

and defined 

A ig 1 igla, ~ g2 
~ =  ao-~-~-4 12N2cr2o 24N2o. ~ 

as A--+ ~ (2.56) 

(2.57) 
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Second, from (2.37), 

1 dw X+ (w) 12N2ogc2 = Z(0) = 2Z + (0) = ~z 

which may be evaluated by contour integration. Now for large w 

(2.58) 

Q ~(w)~ w Jo dy G+(iy) ye 2yA ic3G+(O) 4wA2 as A--+ +oo (2.59) 

Hence 
2 / 2 t 

12N2~ = _g_~c2+cl~ig, lrro+ g2 ig 3 glrrO ~ G+(0) 
4N 12N2oo 24--~a 2] + c3 4A 2 

(2.60) 
which together with (2.55) gives 

B G+(0) (12N2rr 2 ig I 1 ) 

where we have defined 

B 12NZrrZA igloo g~-4g3 
: 

N lg 1 48N2ao 

The constants cl and c2 are now determined by (2.61) and (3.55). 

(2.61) 

(2.62) 

2.4. The Energy Correction 

The above results may now be fed back into the expression for the 
energy correction, (2.28). We need the quantities 

6A = cl (2.63) 

&rN(A) = 12N2a 2 c2 (2.64) 

and 

f A�9 d~ e rc(;t-- A) ~ N(I~ ) = X + (i~z) (2.65) 

Using (2.55), (2.61), and (A.19) of the Appendix, one arrives after a little 
algebra at the result that as N-+ ~ ,  

  N 12N2 2 21) 
A 2-N 12N2~--~o+2NG+(O)J I -B\  ~g~ 

X (  7r0"0 7~2 iglT~ '~ 7c~igl'~ (2.66) 
\ igl 12N2o'o 24N2rro] igl ) 
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With the use of formulas (A.20)-(A.24) of the Appendix, the various 
factors appearing in this equation may be reexpressed as follows: 

igl~ ~fl(n) 3(a~+D~)(a,- igl)--2iglg 
2N 12N2ao + 2NG+(O) 6N(an +D,)  (2.67) 

4iglB= 3(a, + D , ) ( a , - i g ~ ) -  2ig~rc (2.68) 
Dn 

12N2a~ igl 3D~(a n + D.) 
= n + (2.69) 

ig~ 2 2ig1 

~0. 0 ~2 ig 1 ~r rC Dn 
(2.70) 

igl 12N2cr0 24N2a0 2Nigl 

where, from (A.21) and (A.22), 

with 

D. = (a] +/~)i/2 

a, = rr(ll + lZn x/2)/12 

5 = 23rc2/216 

Hence (2.66) is reduced finally, for n # 0, to 

rcZflZ(n) n2rr 2 
6(eu-- eoo) ~ 8N 2 In N 2N 2 In N 

(2.71) 

(2.72) 

(2.73) 

as N--* ~ (2.74) 

which is the desired result. 

2.5. Other  Excited States 

The leading corrections for other excited states may be treated along 
very similar lines to those above. We merely indicate the important 
differences in each case. 

2.5.1. Ground State  in Spin Sector  n for  q ) # 0 .  If the phase 
angle ~b is nonzero, the root density O'N(2 ) is no longer symmetric in 2, and 
it is no longer true that A + - - A _ ,  so that one must consider separately 
the perturbations to 0"N(2 ) in the regions 2..->A+ and 2--.<-A . The 
constraints equivalent to (2.21) are 

f ~  d2 = ~--N [1 (2.75) 0"u(~J~ ) +f l+(n) ]  
A+ 

f 
-A_ 1 

oo O'N(~) d/~ = -~.-~ [1 -~-/~ (n ) ]  (2.76) 
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where 

fl + (n) = 2n -T- q~/n 

The leading-order finite-size correction is given by (2~ 

12 ~ 3 [fl2+(n)+flZ_(n)]}, eN-e~ ~ ll -~  

For the next correction, we find, as N-~ ~ ,  

~2fl +(n) fi_(n) 
6 ( e u - -  eoo) ~ 

(2.77) 

N ~  ~ (2.78) 

1 
8 N  2 In N 8 N  2 in N ""t~n2zc2 (2.79) 

2.5.2. Lowest  Lying "Zero -S t r ing"  State in Sector  n, �9 = O. 
This state is the "l- type" of Alcaraz et al. (13) In the sector n = 0, it is the 
first excited state above the ground state. At 7--0,  this state is degenerate 
with the lowest energy state in the sector n--  1. 

The Bethe-ansatz solution has a single complex root at 2-- ioo with 
the remaining m -  1 roots distributed symmetrically on the real 2 axis 
without any "holes" (i.e., gaps in the distribution). To leading order, the 
finite-size correction is given by 

1i .2 

eN--e~ 6N 2 [1 - 6 ( n +  1) 2] (2.80) 

The contribution of the complex root to e N -  e~,  namely the term 

1 
f ~  d2(Y(2) p ( 2 - 2 c )  (2.81) 

in (2.14), is identically zero, (14) while the contribution of the complex root 
in (2.13), namely - p ( 2 - 2 c ) / I N ,  also vanishes. The sum rule corre- 
sponding to (2.21) is 

fA o 1 q)N(2)d2=-~--~[l +fl~(n)], f l l (n)=2(n+ l) (2.82) 

Otherwise, the treatment is identical to that for the ground state, leading to 
a result, as N ~ ~ ,  for the next-to-leading correction of 

Ifl2(n) (n + 1) 2 12 
6(eN -- eoo) 8N 2 In N -  2N 2 In N (2.83) 

2.5.3. Lowest  Lying " '2-Str ing" State in Sector  n, 0 = 0 .  
The Bethe-ansatz solution for this state has two complex roots lying 
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exactly at 2 =  +_i/2 with the remaining m - 2  roots distributed sym- 
metrically on the real 2 axis, again without any "holes. ''~13'18) To leading 
order, the finite-size correction is that given by (2.80). The contribution of 
the complex roots to e N -  e ~  is again identically zero and the sum rule 
corresponding to (2.21) is again (2.82). However, in addition to the driving 
terms in curly brackets in (2.16), there is an extra contribution from the 
complex roots: 

n N  p ~ - 2  + p 2 +  2rcN22 as 2 ~  (2.84) 

Hence one arrives at the asymptotic result, as N ~  ~ ,  

rc2 f l 1 (n ) [ f l 1 (n ) -8 ]  n2(n+ 1 ) ( n -  3) 
~ ( e  N - -  eo~) ~ - 8N 2 In N = - 2 N  2 In N (2.85) 

for the next-to-leading correction. 
We turn now to the interpretation of these results and, in particular, 

their application to the spectrum of the quantum Hamiltonian limit of the 
four-state Potts model. 

3. L O G A R I T H M I C  A M P L I T U D E S  IN THE POTTS M O D E L  

The (1 + 1)-dimensional Hamiltonian field theory of the q-state Potts 
model was first discussed by S61yom and Pfeuty ~22) from a r-continuum 
limit of the transfer rfiatrix rerived by Mittag and Stephen. ~23) On a chain 
of L sites with periodic boundary conditions the Hamiltonian can be 
written as 

L q--1 L q 1 

n~  = -- E E ff2k--)~ E E RkmRq-+~ (3.1) 
m=l  k = l  m = l  k = l  

where the operators Om and R m at site m obey a Z(q)-algebra: 

~mRm=(j)-lRm~-'~m, ff'~mR~m~-O,)R~m~2m, s = Rq = 1 (3.2) 

with co = e 2~i/q. Criticality corresponds to 2 = 2 c = 1. 
The periodic boundary conditions imply 

RL+I = R I  (3.3) 

More generally, (9) we can apply a "twisted" boundary condition, replacing 
(3.3) by 

R L +  1 = c o O ? R 1 ,  q = 0 ,  1, 2,..., q--  1 (3.4) 
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We denote the resulting Hamiltonian by Hpo,t ~ 0  . In a basis that diagonalizes 
the f2m'S, these Hamiltonians can be block-diagonalized into sectors 
labeled by the eigenvalues of 

L 

l q  = O = o, 1,..., q -  1 (3.5)  
r n =  1 

We denote Hpott s q  acting in the sector 0 by Hpott s.c?'0 
Our interest in this paper is in the spectrum of (3.1) for q = 4  and, in 

particular, in E ~176 the ground state energy of H ~176 which is also the actual 
ground state energy of (3.1) with periodic boundary conditions; E1 ~176 the 
energy of the first excited state of H ~176 for which 

EOl. o _ EOo. o = 2rc'cpxe 
L + ~  (3.6) 

where xe is the anomalous dimension of the energy operator; E ~ the 
lowest energy of H ~ for which 

EO,~ _ EO, O = 2rCZpXm + o ( L  - - 1 )  (3.7) 
L 

with x,, the anomalous dimension of the magnetic operator, and E 1'0, the 
lowest energy of H 1'~ with q ~ 0, for which 

E~ ,~ - E ~176 = 27T'CpXpf(0)  -~ o(L -1 ) (3.8) 
L 

where xp~ is the anomalous dimension of the spin-q/4 parafermion. (24'25~ 
For the X X Z  Hamiltonian (2.1), the scale factor r appearing in (1.1) 

and (1.2) is known to be r = zc at ~ = 0. (15) Hence, the corresponding factor 
zp that enters (3.6)-(3.8) also takes the value rp = zt. (12'13) 

As a function of L, E ~176 should behave as in (1.2). [See also (3.14) and 
(3.15) below.] The leading correction terms in (3.6)-(3.8) should be of the 
form (1.1), i,e., of order 1 / ( L l n L ) .  We will derive the amplitudes de, din, 
and dvf from the results of Section 2. To do so, we make use of earlier 
work '/6'13~ and relate the relevant Potts eigenstates to eigenstates of the 
X X Z  chain. 

In the thermodynamic limit, Hamer (6) showed that the Ports 
Hamiltonian (3.1) is equivalent to the X X Z  chain (2.1) on N = 2 L  sites 
with 

1 
A = -- 5 ,,/-q,_ (3.9) 
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These arguments were extended to finite L by Alcaraz et al. (13), who took 
explicit account of the effect of boundary conditions. Specifically, they 
established that the ground state energy Eo ~176 of (3.1) with periodic boun- 
dary conditions is given by 

( 1 
q) L + q~/SEo(A, ~b; 2L) (3.10) E~ 

q) = 2 2 - ~  

where Eo(A, 45; M) is the ground state of (2.1) with A given by (3.9) and 

o_- cos 

Hence, for q = 4, we have A = - 1  and cb = 0. 
For  A = - 1 ,  the ground state energy of the periodic XXZ chain 

approaches its bulk limit as (15'~6) 

Eo,~Neo~- -~  1+  , N ~  (3.12) 

where e~ = �89 - 2 in 2, as first obtained by Hulth6n. (26) With the definitions 
(2.71)-(2.73), the amplitude of the logarithmic correction term is given 
exactly by 

(a_o +_ ~o~2 = 2 (11 ,5  + 3 4 ~  2 A=l\ao+DoJ 12\ 11~'-+- 4 ~ J  =0.343347... 

in accord with the calculation of Woynarovich and Eckle. (16) 
Combining (3.12) with (3.10) implies that 

(3.13) 

T~ 2 
E~176 q = 4) = Le'~ - -6-s c(L) (3.14) 

where e ' = 4 e o o = 2 - S l n 2  and c(L) is an "effective anomaly" that 
varies as 

A 
c(L) ,-~ 1 + _,--------~ as L ~ co (3.15) 

(ln 2 L )  

Hence, we recover the expected value c = 1 for the conformal anomaly of 
the four-state Potts model. However, the amplitude (3.13) of the leading 
correction term differs from that predicted by Cardy c3) for the usual 
(Euclidean) version of the Potts model. This is due presumably to a dif- 
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ferent normalization of the marginal field in the Hamiltonian formulation; 
we discuss this point further in Section 4. 

On the other hand, the amplitudes d~ appearing in (1.1) should be 
universal and hence the same for the Hamiltonian and Euclidean for- 
mulations. To compare with Cardy's results, we write (1.1) and (1.2) in the 
form 

n2 2re 2 d~ 
e ~ - e ~ ~  6L2(1 -12x~) - t  LZln L (3.16) 

For  the modified X X Z  chain on L = N sites, comparison with (2.79) yields 

d(n, ~ )  = -n2/4  + ~2/16n 2 (3.17) 

which for q5 = 0 reduces to the result found by Woynarovich and Eckle. (16) 
The calculation of the amplitudes d~ for the Potts states defined in 

(3.6)-(3.8) proceeds in two steps. We first identify the X X Z  equivalences of 
the Potts energies E ~176 E ~ and Ed ,0. This has been done by Alcaraz 
et al. c13) In all three cases, the Potts eigenvalue on an L-site chain can be 
expressed exactly in terms of an eigenvalue of an X X Z  chain on N = 2L 
sites with A = - 1  by the equivalence 

Epott s ,~  2Exx z (3.18) 

The specific X X Z  states are(IS): 

E~176 The lowest lying two-string eigenstate in the sector n = O  with 
~b=0. 

Eo,1. The lowest energy state in the sector n = 0 with ~b = n. 

E~,0: The lowest energy state in the sector n = 1 with q5 = 2rc(t/q. 

With these identifications we can now compute the relevant dimen- 
sions x~ and amplitudes d~ from the results of Section 2. For the energy 
operator, the required results are contained in (2.80) and (2.85). Com- 
parison with (3.3) g ives  6 

Xe = 1/2 and de = 3/4 (3.19) 

Similarly, for the magnetic operator we find from (2.78) and (2.79) 

Xm = 1/8 and dm = 1/16 (3.20) 

6 We note in passing the generalization of this result for the anomalous dimension to y r 0. 
The general result corresponding to either the 0-string or 2-string mass gap in sector n is 
x = x~,l + n, where X,,m =- n 2 X p  -~ m2/4xp with Xp = (7~ - -  7)/2n. (12) 
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thereby confirming precisely Cardy's predictions. Finally, for the para- 
fermions, the amplitudes follow directly from (3.17), with q~=2rcp/4, 
p = 1, 2, 3, 4. We find 

dpf(p) = - 1/4 + p2/64 (3.21) 

which appears to be a new result. 

4. N U M E R I C A L  RESULTS 

In the preceding sections, we have computed analytically the 
amplitudes of the dominant logarithmic corrections to finite-size scaling for 
several energy levels of the quantum Hamiltonian version (3.1) of the four- 
state Ports model. For the levels associated with the energy and magnetic 
operators precise agreement was obtained with the predictions of Cardy (3~ 
based on conformal invariance. 

As mentioned in the Introduction, numerical estimates of the critical 
exponents of the four-state Potts model have been difficult. Direct estimates 
of d e and d m have proved even more difficult. (3'13) We conclude this paper 
by reconsidering the large-lattice data of Alcaraz e t a / .  (13) in the light of the 
results of Section 3. We restrict attention to the energy and magnetic 
operators. 

Define estimators 

(L) Xe(L )~-- ~ ( EO'O-Eft ,0 ) 

xm(L) = ~ 2  (E~ ' ~  E~176 

(4.1) 

(4.2) 

From the results of Section 3, these estimators should behave for large L as 

x~(r) = x~ +ln@L + R~(L) (4.3) 

where R ~ ( L ) =  o(1/ln L); see also (4.8) below. 
Using the data of Alcaraz e t a / . ,  (13) we have computed Xe(L)  and 

xm(L ) for L ~< 512 and L ~< 256, respectively. The calculation of the relevant 
eigenvalues involved solving the Bethe-ansatz equations of the X X Z  

Hamiltonian on chains of up to 1024 sites; we refer to refs. 13 and 27 for 
details of this computation. These estimators are plotted versus 1/ln 2L in 
Figs. 1 and 2. A trend toward the limiting values of xe = 1/2 and x m = 1/8 
is apparent. Moreover, the estimates appear to vary linearly with 1/ln 2L 
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for L greater than 100-130. A straight line fit to the data for xe (L)  for 
L >  130 (1/ln 2L <0.18) yields the estimates: 

Xe = 0.506, de = 0.634 (4.4) 

Similarly, using data for L > 100 (1/ln 2L < 0.2) gives 

Xm = 0.127, dm = 0.036 (4.5) 

While these estimates of x e and x m are reasonable, those of d e and dm are 
significantly lower than the exact values. 

One can attempt a more direct estimate of the limiting value x~ of the 
sequences {x~(L)} and the asymptotic slope d, by constructing two-point 

fits to the form x + d/ln 2L using data from two lattices. This procedure 
yields the modified estimators 

ln(2L) x ~ ( L ) -  ln(ZL') x~(L ' )  
~ ( L )  = (4.6) 

ln(2L) -- ln(2L') 

d~(L) = ln(ZL) l n (ZL ' ) [ x~ (L )  - x~(L')] (4.7) 
ln(2L') - ln(2L) 

where in our calculations L ' =  L - 2 .  The behavior of these estimators is 
illustrated in Tables I and II. The new estimates are comparable with the 
values quoted in (4.4) and (4.5). 

While we have not analytically explored the nature of the correction 
term R~(L)  in (4.1) and (4.2), we expect on the basis of the analysis of 

Table I. Numerical  Estimates of x e and de for  the Four-State Potts Model  

Raw data  Two-point fits Extrapolates 

/~ xe(L) i,(L) de(L) Y',(L) 3; (L) 

8 0.722621 0.558055 0.456272 - -  - -  
16 0.684992 0.525623 0.552330 - -  - -  

32 0.657247 0.514612 0.593200 0.533194 0.176705 
64 0.636473 0.509946 0.613913 0.515719 0.413351 

128 0.620490 0.507572 0.626150 0.508215 0.541012 

256 0.607858 0.506164 0.634398 0.504555 0.614867 
512 0.597639 0.505226 0.640551 0.502685 0.658165 

Exact 0.5 0.5 0.75 0.5 0.75 
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Table II. Numerical Estimates of x,.  and dm for the Four-State Potts Model 

Raw data Two-point fits Extrapolates 

L Xm(L ) ~m(L) dm(L ) ~(L) 3~(L) 

8 0.139056 0.126799 0.033982 - -  - -  
16 0.136454 0.127699 0.031374 - -  - -  
32 0.135233 0.127530 0.032034 0.122810 0.099589 
64 0.134106 0.127176 0.036240 0.123800 0.086033 

128 0.133217 0.126843 0.035346 0.124439 0.074816 
256 0.132493 0.126570 0.036953 0.124778 0.067814 

Exact 0.125 0.125 0.0625 0.125 0.0625 

Woynarovich and Eckle (16) and an extension (see below) of Cardy's renor- 
realization group argument that 

p~ ln(ln 2L) + q~ + o(1) 
R~(L) = (ln 2L) 2 , L ~ oo (4.8) 

This form for the dominant correction term is substantiated in Fig. 3, 
where we plot 

re(L ) =- (ln 2L) 2 R~(L) = (ln 2L) 2 Xe(L) 2 4 In 2L 
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Fig. 3. The reduced correction term re(L ) defined by (4.9) as a function of ln(ln 2L). 
Symbols denote exact finite lattice estimates for L ~< 512. The insert depicts the linear fit to 
data for 256~< L~< 512 used to construct  the empirical expression for re(L) discussed in the 
text. 
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versus ln(ln2L). As shown in the insert in this figure, data for 
256 < L < 512 are well represented by a straight line, although in terms of 
ln(ln 2L) this is a rather small range? A least-square fit to the data in this 
range gives 

Pe "~ --0.25, qe ~ -0.024 (4.10) 

If we accept these values and omit all higher order terms, a reasonably 
satisfactory fit can be obtained (see Fig. 1) for L > 25. A similar analysis of 
the data for xm(L) results in a similar fit (see Fig. 2) with 

Pm ~ --0.030, qm ~ --0.037 (4.11 ) 

Assuming that the leading correction term is of the form (4.8) also 
allows the estimates in Tables I and II to be refined by a simple strategy. 
Define 2 t =  2(L = 2 t-  1) and similarly for dr. From (4.8), we find that both 
2 t and d t should approach their limits as (p' In l+  q')/l k with k =  2 for 2~ 
and k = 1 for d~. It is now easy to use three successive values of xt and dr to 
improve the estimate of the limits. These improved estimates, denoted 2' 
and d', are listed in the last two columns of Tables I and II. A definite and 
significant improvement in the estimates of Xe and xm is evident. In 
addition, it is now clear that, in fact, the estimates of the amplitudes d e and 
dm have not stabilized and that a definite trend in the direction of the exact 
values is evident. ~ 

We do not know of any a priori predictions of the coefficients in the 
correction term R~(L). However, the values found by our fitting procedures 
are physically reasonable. Consequently, such corrections are the most 
likely explanation of the extremely stow convergence to the exact 
asymptotic behavior that is so evident in Figs. 1 and 2. Rather soberingly, 
our empirical fits of Re(L ) and Rm(L) suggest that the leading correction 
term would become directly visible in finite lattice data only for L ~ 101~ 

The possibility that the logarithmic amplitudes might be visible only in 
data from extremely long chains or extremely wide strips was recognized by 
Cardy in his original discussion. (3) He suggested that it might be more 
appropriate to analyze the finite lattice data in terms of an effective 
coupling constant g(ln L) conjugate to the marginally irrelevant operator 
(gcor(r) that is responsible for the appearance of the logarithmic terms in the 
first place. 

Since, for the four-state Potts model, the dimension of (gco~(r) is 
xcor = 2, g(l) renormalizes under a change of length scale as 

dg/dl.= -Tzbg 2 -+- O ( g  3 ) (4.12) 
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where b is a constant which is universal (3) if the operator (9~o r is normalized 
so that its two-point function decays as 1/r 2 ..... . Integrating (4.12) gives 

go (4.13) 
g(ln L) = 1 + 7zbgo In L 

Here go is the bare physical coupling that measures the deviation of the 
physical critical Hamiltonian H c from the conformally invariant fixed point 
Hamiltonian H*;  namely 

H,. = H* + go ~ (gcor(r) (4.14) 
r 

The effect of this term on the eigenspectrum of H* can be studied 
perturbatively provided the renormalized coupling (4.13) is used as the 
expansion parameter. This was the analysis carried out by Cardy,/3) who 
showed that the ground state energy varies as g3, while gaps vary linearly 
with g. Specifically, in the notation of (3.14), (3.15), (4.1), and (4.2), 

c(L)  = 1 + 87z3b[-g(ln L)]  3 + O(g 4) 

x~( L ) = x~ + 2rcb~ g(ln L) + O(g 2) 

(4.15) 

(4.16) 

where the numbers b~ are related to operator product expansion 
coefficients. (3) Substituting (4.13), we recover (1.1) and (3.15) with 

and 

d ~ = 2 b j b  (4.17) 

A = 8/b 2 (4.18) 

Cardy's alternative method 7 for analyzing finite lattice data for 
logarithmic amplitudes can now be stated as follows: 

1. Calculate c(L) from data for the ground state energy and then use 
(4.15) to compute g(ln L) ignoring higher order terms. 

2. Use (4.16) to estimate x~ and b~ by plotting x~(L) against g(ln L). 

The advantage of this method over a direct extrapolation in L arises 
from the fact that corrections should be simple powers of g(ln L) instead of 
complicated combinations of logarithms of In L. Indeed, if we explicitly 

7 This procedure was tried by Cardy (3~ for the Euclidean Ports model using the transfer matrix 
data of B16te and Nightingale. (71 More recently, it has been used by Wills ~28) in a finite lat- 
tice study of the restricted solid-on-solid (RSOS) models/TM 

822/52 ,'3-4-12 
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include a term 
replaced by 

+~b~g 3 in (4.12), we find on integration that (4.13) is 

( 1 - / ?g  "] (4.19) 1 1 /~(ln g - l n  go) +/~ln \1 -flgo] 
g go 

~zb in L 

Hence, for large L, we obtain 

1 {1  ln ,nL  (,)} 
g(ln L) - nb ln----~ 7rb In L + O i - ~  (4.20) 

which on substitution in (4.16) reproduces a correction term R~(L) of 
precisely the form (4.8). 

Unfortunately, there is an implicit problem concerning the value of the 
number b that enters (4.12) and (4.15). If, as discussed above, (9co r is 

appropriately normalized, then b =4/xf3,  as assumed by Cardy in his 
analysis of the Euclidean Potts model. However, there seems to be no 
reason to assume a priori that this normalization is valid. Indeed, compar- 
ing (4.18) with (3.13) yields 

b = 4 x/6 \ 11 x/.~ + 3 x / ~ j  = 4.827011... (4.21) 

Consequently, it seems necessary to regard b as a further parameter to be 
determined, at least in principle, from the behavior of c(L) for large L. 

The practicality of this approach is tested in Fig. 4, where we plot 
[ c ( L ) - l ]  -1/3 versus ln2L. From (4.13) and (4.15) this graph should 
asymptote to a straight line with slope �89 2/3= 1.428 .... While Fig. 4 is 
qualitatively in agreement with this prediction, the apparent asymptotic 
slope yields a value for b ~ 5.23, which is rather larger than the exact value 
given by (4.21) and, as in our earlier analysis, suggests that the true 
asymptotic regime has not been reached. 

In view of this difficulty in estimating b reliably, we consider xe(L ) and 
xm(L) as functions of 

u(L) - [c(L) - 1] 1/3 ~ 2~bl/3g(ln L) (4.22) 

instead of simply g. This functional dependence is shown in Figs. 5 and 6. 
For small u, we expect from (4.16) that 

x~(L) = x~ + d~u + O(u2) (4.23) 

where 

1 b2/3 d~ (4.24) ~l = b~b-1/3 =-~ 
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In particular, 

3 
1.071067..., ~m = 1 b2/3 = 0.089256... (4.25) ~ . = ~  b '/3 = 

hA 

Comparison of Figs. 5 and 6 with Figs. 1 and 2 suggests that (4.23) 
affords a somewhat better approximation to the available finite lattice data 
than does (4.16) omitting the correction term. The two approximations are 
compared more quantitatively in Fig. 7, where we plot the respective 
percentage deviations from the exact finite lattice values. Use of u(L) rather 
than l/In 2L does result in an improvement in the case of xm(L), but for 
xe(L) the improvement is only slight. Interestingly, in this case the two 
approximations have errors of opposite sign. 

Overall the improvement does not appear to be substantial. This is 
reflected in direct estimates of Xe, de, Xm, and d,~ from linear fits of x,(L) 
and xm(L) as functions of u. As indicated in Figs. 5 and 6, such fits still 
deviate significantly from the exact asymptotic behavior and lead to the 
esimates 

xe ~ 0.491, ~ ~ 1.29 (4.26) 

and 
Xm ~ 0.126, ~,, = 0.074 (4.27) 
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If we use the exact value (2.73) for b, we then obtain d ~ 0 . 9 0  and 
d~ ~ 0.05, both of which are a considerable distance from the exact values. 

We can obtain better estimates of ~ and d~ if we a s s u m e  the exact 
values of x~ and Xm. TO do so, define 

x~(L)-x~ 
r ~ ( u ) -  , c ~ = e , m  (4.28) 

u(L) 

= d~ + O ( u ) ,  u ~ 0 (4.29) 
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These functions are illustrated in Figs. 8 and 9. In the case of re, we 
observe a dramatic nonmonotonic behavior. Clearly, this behavior will 
significantly affect any attempt to estimate re(O) unless data for sufficiently 
small u (sufficiently large L) are available. Given our data, we can make a 
reasonable extrapolation (see Figs. 5 and 6), from which we conclude that 

re(0 ) ~ 1.07, r,~(0) ~ 0.091 (4.30) 

which are in much better agreement with the exact values. In particular, 
the ratio de/~lm, which should be independent of b, has the value 11.8, in 
good agreement with the exact value of 12. In contrast, our earlier 
estimates yield 17.4 for this ratio. 

While this final analysis has led to a partial numerical confirmation of 
our analytic results, it is obvious ,that, in the absence of the analytical 
results, an accurate confirmation of the predictions of conformal invariance 
would have been impossible even given the extensive finite lattice data that 
we had available. Consequently, conventional finite lattice studies (usually 
restricted to L < 20) of systems exhibiting a marginally irrelevant operator 
should be interpreted with considerable trepidation. 
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t o  t h e  d a t a  f o r  u < 0 . 0 9 .  
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Fig. 9. The reduced deviation r,,(u)= [xm(L )-x,~]/u(L) as a function of u(L). Symbols and 
line have the same meaning as in Fig. 8. 

A P P E N D I X  

We recall here some relevant results from refs. 17 and 20 concerning 
the solution of the Wiener-Hopf  equation (2.16) for the leading-order 
finite-size corrections to the root density. We are here interested in the 
special case 7 = 0 ,  obtained from earlier results (17'2~ by first rescaling 
variables as follows: ~ --* 7~, w ~ w/7, a -* a/7, p --+ P/7, and then taking the 
limit ~ --* 0. 

Neglecting the terms in curly brackets, one may rewrite (2.16) in the 
form 

fo ~ 2@ k'(t) (A.1) Z ( t ) -  k ( t - s ) z ( s ) d s = f ( t ) -  k(t)~ 12NZao 

where 

k(2) = p(2)/n (A.2) 

f ( ) [ )  = aoo(2 + A) (A.3) 

)~(~) = O"N(/I "~- A) (A.4) 

t = 2 - A  (a .5 )  
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Define Fourier transform pairs Z*--*X, f*--~F, k , - - , K  as in (2.39) and 
factorize (17) the kernel function K(w) as 

E l - X ( w ) ]  ' = 6 + ( w ) G  (w) (A.6) 

where the functions G+(w) are holomorphic and continuous in the half- 
planes 7r+ respectively, and are given by 

(2~) m 
G + ( w ) = G _ ( - w ) =  

r(1/2 + z) 

As IwJ --+ ~ in rt+, one finds 

where 

At w = 0, 

i w  
zZe z, z =  - - -  (A.7) 

2n 

G + ( w ) ~  1 + g~ + g2 + g3 + O(w_4)  
W W 2 W 3 

(A.8) 

g~ = ilr/12, g2 = 1/2 g~ (A.9) 

G+(0) = ~-2 (A.10) 

The Wiener-Hopf  equation (A.1) can be solved (17) by standard techni- 
ques, much as in Section 3. Splitting X(w)  as 

where 

X(w) = X + (w) + X_ (w) 

fo X+(w)  = eiW'z(t ) dt 

(A.II) 

(A.12) 

f 
0 

X _ ( w )  = eiW'Z(t ) dt 
oD 

(A.13) 

are holomorphic and continuous in ~t+, respectively, one obtains a solution 

X+ (w) = C(w) + G + (w)[-P(w) + Q + (w)] (A.14) 

where C(w) and P(w)  are entire functions: 

1 iw 
C(w) = ~-~-~ 12N2~o (A.15) 

P ( w )  = igi 1 iw (A.16) 
12N'Sao 2N 12N2ao 

G + (irc) e -~A 
Q+(w)  = (A.17) 

(~z - iw) 
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The constraint (2.21) 

x+(0)  = aN(,~) d,~ = ~  rl +/~(n)] (A.18) 

gives rise to the relation 

G +(irc)e -~A 1 igl f l(n) 

2N 12N2oo q 2NG + (0) 

and using this one finds 

(A.19) 

1 
ao - ~rN(A) = )~(0) =-4--N Jan + (a] +/~)i/2 ] (A.20) 

where 

and 

~fl(n) ~ (11 + 1 2 n ~ )  (A.21) an = r~ + igl + G +(O----~) - 12 

2 23~ 2 (A.22) 
b=-~ ( g ~ -  2 ig l~ )  = 216 

In the present work, we also need an expression for 

- i  ~~ 
a~v(A) = 2'(0)=-;--z~ J|_~ dw w X ( w )  (A.23) 

which may be evaluated by splitting X ( w )  into components X + ( w )  and 
X (w) and performing contour integrations. The result is 

ig Irc 2 - Tcg~ + ig3 - ig3/2 
~v(A) - ~ = 12N2ao 

+ g2/2 _ ig 1 ~ _ ~2 _ (7r + ig I ) g f l (n) /G + (0) 
2N (A.24) 
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